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INTRODUCTION 

It is possible to calculate the eflects of arbi- 
trary stress or strain histories on linear viscoelastic 
bodies. A concise statement of the necessary 
theory is contained in the Boltzmann superposition 
principle, which, however, requires that other 
conditions, such as temperature and relative 
humidity, are kept fixed. The objective of this 
paper is to provide a generalization of the Boltz- 
mann superposition principle so that an arbitrary 
thermal history may be included in calculations. 
This is accomplished by incorporating the time- 
temperature superposition principle into the theory 
by utilizing spring and dashpot model concepts. 
The result for the generalization of these models 
to continuous relaxation and retardation spectra 
then becomes evident. 

1. MECHANICAL MODELS AND THE TJME- 
TEMPERATURE SUPERPOSITION PRINCIPLE 

Creep, stress relaxation and dynamic measure- 
ments on linear viscoelastic materials at different 
temperatures generally obey the time-temperature 
superposition principle. In the case of creep or 
stress relaxation, this principle, in its simplest 
f0rm~1-3 states that two tests at  different tempera- 
tures are related by a multiplicative transformation 
of the time scale. In  terms of generalized Voigt 
or Maxwell spring and dashpot models14 this 
implies that all viscosities of the dashpot elements 
in both representations are changed by the same 
factor as the temperature is changed, but that all 
spring moduli are independent of temperature. 

The spring moduli appearing in both models 
may, however, be considered temperature-de- 
pendent. Assuming the springs to be rubberlike 
in temperature dependence, the moduli are pro- 
portional to temperature and density. Thus, in 
comparing creep or stress relaxation results at 
different temperatures, it is customary to correct 
for this by using so-called reduced moduli5 for 
stress relaxation and creep. The assumed tem- 

perature dependence of the springs and of the 
dashpots are then consistent for the Maxwell and 
Voigt representations, e.g., the time-temperature 
shift factor is the same for creep and stress relaxa- 
tion. This is the form of the time-temperature 
superposition principle adopted in this paper. 

A further refinement6 of the time-temperature 
superposition principle involves recognition that the 
generalized Voigt model contains an isolated 
spring, which corresponds to the glassy state and 
which should be virtually independent of tempera- 
ture. With this additional assumption, the sim- 
ilarity in the temperature dependence of the 
mechanical elements in the Maxwell and Voigt 
representations disappears. For example, if it is 
assumed’ that all moduli of the Maxwell repre- 
sentation are proportional to the temperature and 
density, then it would follow that the glassy 
modulus in the corresponding Voigt representation, 
which is the sum of all moduli in the generalized 
Maxwell model,* would also be proportional to 
the absolute temperature and density. Similarly, 
the existence of a temperature-independent glassy 
modulus in the Voigt representation implies that 
a multiplicative temperature dependence for the 
remaining springs and a second multiplicative 
temperature dependence for the dashpots will 
not lead to the same type of behavior for the 
elements in the equivalent generalized Maxwell 
model. This follows at once from the general 
relation between the two representations as given 
by Gross.* 

In treating stress relaxation data, a correction 
for a glassy component of the apparent compliance 
leads to a similar difficulty. Thus, if a tempera- 
ture-independent glassy compliance is subtracted 
from the apparent compliance, the difference 
has been considered9 to be inversely proportional 
to temperature and density for purposes of time- 
temperature superposition. While such a glassy 
compliance is numerically the same in the cor- 
responding Maxwell and Voigt representations, it 
again happens that the temperature dependence 
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of the various remaining elements cannot, in 
general, be similar and multiplicative if the above 
assumption is made. Indeed, as already discussed, 
the various moduli in the generalized Maxwell 
model cannot be proportional to the same tempera- 
ture dependent factor if there is to be a tempera- 
ture-independent glassy compliance. 

The attempt to justify the time-temperature 
superposition principle by assigning a specified 
multiplicative temperature dependence to the 
elements in the models7 thus leads to a lack of 
symmetry in the temperature behavior of the 
Voigt and Maxwell model elements when a tem- 
perature-independent glassy modulus is made 
part of the Voigt model. As a simplifying as- 
sumption, the spring corresponding to the glassy 
modulus is here regarded as obeying the same 
temperature dependence as all remaining springs 
in order to preserve this symmetry. From the 
standpoint of making viscoelastic calculations 
for an arbitrary temperature path, this assumption 
clearly leads to an insignificant error. 

2. GENERALIZED SUPERPOSITION PRINCIPLE : 
STRESS RELAXATION REPRESENTATION 

In this section we consider stress relaxation 
occurring during an arbitrary temperature path. 
The treatment is similar to that of Hopkins,lO 
except that the moduli are here allowed to be 
temperaturedependent in the generalized Maxwell 
model. The generalized Boltzmann superposition 
principle is then derived. The cases of shear and 
tensile deformations differ in that for the latter 
the strain must be corrected for t,hermal expansion. 

Stress Relaxation 

Following Gross,a the instantaneous application 
of a constant shear strain yo at the time 1 = 0 
to a linear viscoelastic material under isothermal 
conditions results in a shear stress X ( t )  given by 

x(t, = Y o [ G  + $0) I (2.1) 
Here Gs is the static modulus, and the relaxation 
function, $( t ) ,  is a monotonic decreasing function 
of t satisfying $(a) = 0. If the strain is an 
arbitrary function of time, the Boltzmann super- 
position principlea is given by: 

s(t) = [G, + IL(t - e>]de (2.2) 

where the specimen is considered to be completely 
relaxed at t = 0. 

It is customary to represent $(t) in terms of the 

(2.3) 

For the generalized Maxwell model,4 the spectrum 
is discrete and 

relaxation spectrum G(7) : 

$(t) = f r  G(7)e-'" dr 

(2.4) 
k 

Here the relaxation time ?k = ? i k / G k ,  where f k  

and G k  are the viscosit,y and modulus of the dashpot 
and spring in the kth Maxwell element. The 
relaxation function for a discrete spectrum may 
be made to approach that for a continuous spectrum 
by increasing the number of elements. It is there- 
fore sufficient to consider the temperature de- 
pendence of the discrete elements and to regard the 
continuous case as a limit. 

It is assumed7 that the temperature dependence 
of the elements follows: 

?,(TI = alT, T o I ? t ( T o 1  1 
*r(T) = a[T ,  ToIblT, ToI?iL(To) J (2.51 

Here a[T,  To] is the time-temperature shift factor 
with the reference temperature To explicitly 
introduced, and b[T, TO] denotes p(T)T/p(To) TO 
where p is the density. The time-temperature 
shift factor has also been denoted by aTl1 and 
K( T ) .  l2 In deriving the generalized Boltzmann 
principle it is necessary to use a notation which 
indicates the reference temperature, To. 

For the kth Maxwell element, an imposed 
constant strain yo is the sum of the separate 
dashpot and spring strains: 

Y o  = ?@k, t> + d f k ,  2) (2.6) 

ek(T> = b[T,  TO](?k(TO) } 

These also satisfy4: 

Here &(t)  is the stress developed by the kth 
Maxwell element, and G k  and 7ik are regarded as 
functions of time, since the temperature is allowed 
to vary with time. From eqs. (2.6) and (2.7) 
it follows that: 

d In SL(t)/dt + l / f r  = d In G k / d t  (2.8) 

This has the solution: 

8 t ( t )  = YO&(t) eXp { -  .fk dt'/?k(t')] (2.9) 
which satisfies the initial condition Sk(0) = yo X 
G k ( 0 ) .  Introducing the temperature explicitly 
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using the first two relations in eq. (2.5), and 
summing over all elements, we have 

s = rob[T(t), T O ]  (G, (T~)  + C G ~ T O )  exp 
k 

[ - W / ? d T o )  11 (2.10) 

(2.11) 

where, following the notation of Hopkins, 
have let 

we 

w = Jl dt’/a[T(t’), To] 

and To is the temperature at t = 0. 
tinuous spectrum we may write generally: 

For a con- 

S(n = yob[T(t), Tol(Bs(To) + $[To, w l )  (2.12) 

Here the notation $[TO, w ]  is used to indicate 
that the relaxation function $ is taken at  the 
initial temperature, To. This result is the same 
as that of Hopkins,‘O with the additional correction 
for the temperature dependence of the moduli 
which appears in the factor b. 

Generalized Superposition Principle 

Let a shear strain y be applied starting a t  zero 
time, and let y be a function of time. During R 

given increment of time, say between the times 0 
and e + de, we may regard an infinitesimal strain 
dy(8) as being applied to the system. This infini- 
tesimal strain results in an infinitesimal stress dS 
which decays with the further passage of time, 
according to eq. (2.12), so that at  some later 
time t the stress resulting from dy(8) is: 

d q t )  = dy(e)b[T(t) ,  ~(e)](G,[~(e)l +${T(e), 
Ji d t ’ / a [ ~ ( t ’ ) ,  T ( ~ > I ) )  (2.13) 

For a sequence of such infinitesimal strain appli- 
cations, the resulting infinitesimal stresses at time 
t are assumed to be additive, so that the total 
stress at time t is: 

( G w(e) I + rL { w), 1‘ d t ’ h  [ ~ ( t ’ ) ,  W )  I do )> 
(2.14) 

where dy(0 )  has been replaced by [dr(8)/dOIdB. 
This can be simplified further by considering the 

discrete case eq. (2.4). Thus let 

$ {T[01, 1’ dt’/a[T(t’), T(e)1} . k  = c G k  (T(@))  x 

From eq. (2.5) the relation 

a ~ ( t ’ ) ,  T ~ I  = ~ ( t ’ ) ,  T ~ I / u [ T ( ~ ) ,  (2.16) 

is readily established. Hence it follows that 
the right-hand side of eq. (2.15) equals: 

b[T(e), ~~1 C G&r0) 
I: 

Hence, in general, 

tL\~(e),  1: dt’ /a[W’) ,  W) 11 
= b[T(O), To]${To, J; dt’/a[T(t’), To]) (2.18) 

= b[T(e), T ~ I J . [ T ~ ,  w(t> - w ~ i  

Inserting eq. (2.18) into eq. (2.14) and using the 
relation for b corresponding to eq. (2.16), we 
obtain, finally, 

+ IL[T~, ~ ( i )  - w(e)lJde (2.19) 

If we regard a and b as known functions, then we 
may let w be the independent variable, in which 
case eq. (2.19) becomes 

S(w) /b[T(w) ,  To1 

(2.20) 

The result admits of a very simple interpreta- 
tion. If we call w(t) the equivalent timelo and 
u(w) = S(w)/b[T(w),To] the equivalent stress, 
the result of an arbitrary shear strain application 
during any temperature path gives the equivalent 
stress as a function of equivalent time, just as if 
the experiment were performed under isothermal 
conditions where the temperature has the value 
To. Equation (2.20) is also an integral equation 
for strain as a function of equivalent time where the 
equivalent stress is applied in an arbitrary manner. 
Therefore, a similar superposition statement holds 
with respect to the creep representation, and we 
shall show this independently later. 

Tensile Behavior : Thermal Expansion Effects 

Shear viscosities and moduli may be converted to 
approximate tensile values by multiplying by 3. 
Thus, all that has been said about shear holds for 
tensile deformation, with the exception that the 
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observed tensile strain e must be corrected for 
thermal expansion. With reference to eq. (2.20) 
it is clear that the superposition principle takes the 
form 

F ( w ) / b [ T ( w ) ,  To1 

{ 0, (To) 
d [ e  - a(T(w’) - To)] 

dW ‘ 
+ &[To, w - w’])dw’ (2.21) 

where F is the tensile stress and a is the linear 
thermal expansion coefficient. The result of a 
tensile stress relaxation experiment in which the 
value of e is fixed is thus not simply analyzed for 
nonisothermal conditions unless the thermal ex- 
pansion is truly negligible. 

3. GENERALIZED SUPERPOSITION PRINCIPLE : 
CREEP REPRESENTATION 

In this section we first consider creep occurring 
during an arbitrary temperature path. This 
leads to a generalized superposition principle in 
the same way as for stress relaxation. Thermal 
expansion effects again complicate the tensile case. 

Creep 

The application of an instantaneous 
shear stress So to a linear viscoelastic 
under isothermal conditions resultss in 
strain y(t) given by: 

~ ( t )  = SO[J~ + t/qo + (~(01 
Here J, is the glassy compliance, 70 is the 

constant 
material 
a shear 

(3.1) 
viscosity 

of the irrecoverable part of the deformation, 
and p(t) is the creep function which satisfies 
( ~ ( 0 )  = 0. The isothermal Boltzmann super- 
position principle* for creep is 

(3.2) 

For a discrete4 retardation spectrum (generalized 
Voigt model), the creep function is 

p(t) = ( l / G k ) ( l  - f3-t’rh) (3.3) 
k 

where T k  = qk/Gk, and 7]k and GI, are the viscosity 
and modulus of the spring and dashpot of the 
kth Voigt element. 

Consider the application of a constant shear 
stress So at t = 0, and let the temperature vary 
according to an arbitrary path. The spring 
corresponding to J ,  will have the strain y(Jp, t )  = 

SOJp(t) while the single dashpot qo develops a 
strain given by 

(3.4) y(q0, t )  = sos,” dt’/qo(t’) 

The strain Tk(t) of the kth Voigt element satisfies4 

so = Gk(t)Yk(t) + qk(t)d?’k(t)/dt (3.5) 

The solution of this equation satisfying the initial 
condition ~ ~ ( 0 )  = 0 is 

rk(t)  = SOs: exp { -  Stt dt”/Tk(t”)) dt’/l]k(t’) 
(3.6) 

For the behavior of the generalized Voigt model 
as a whole, we then have : 

From eq. (3.3) we find that, for isothermal condi- 
tions, 

where x(t) may be defined’ as the recollection 
function. Thus, x(t) corresponds to the summa- 
tion in eq. (3.8), so that, in general: 

y(t)/So = JATo>/b[T(t), To1 

+ [l/qo(To) I s,” dt’ /a[W’) ,  TOlb[T(t’), To1 
+ J; x{To, s,! dtf’/“t”), ToI]dt’/a[T(t’) To] 

X b[T(t’), To] (3.10) 

Thus, for the case of creep, the nonisothermal 
result is not as simple as for stress relaxation. 
This is because, in the case of creep, it is the stress, 
not the apparent stress, that is held constant, as 
will become clear in the next section. It should 
be noted that if the temperature dependence of 
the moduli were neglected,’“ the above difficulties 
would not appear. 
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Generalized Superposition Principle 

Consider the application of an arbitrary stress 
S(t) commencing at t = 0. During the time 
interval B to 8 + do, the stress dS(0) is applied 
resulting in the strain d-y(t) a t  some later time t, 
which is obtained from eq. (3.10). Assuming the 
validity of superimposing all such infinitesimal 
strains, we obtain: 

By considering x for the discrete case of eq. (3.9) 
and using the relations (2.5), this can be rewritten 
as : 

a[T(t’), To]b[T(t’), To] dB (3.12) ) 
This expression is equivalent to: 

y(w) = LWd* {J,(To) + ( w  - w’)/7?o(To) dw ’ 
+  TO, w -w’]}~w’  (3.13) 

where w is equivalent time and u is equivalent 
stress. The equivalence of eqs. (3.12) and (3.13) 
follows when both integrals are integrated by 
parts taking S(0) = 0. 

Just as for the case of stress relaxation, the 
generalized Boltzmann principle is equivalent to 
the isothermal case, provided u and w are used 
instead of S and t, respectively. It is clear from 
eq. (3.13) that the nonisothermal creep experi- 
ment does not obey a simple expression [which is 
given by eq. (3.10)], since it is S,  not u, that is 
fixed. 

Tensile Behavior : Thermal Expansion Effects 
The extension to the tensile case is similar to 

t.he case of stress relaxation. It follows at once 
that 

e(w) - a(T(w)  - TO) 

4. DISCUSSION 

In the case of shear, it will be seen that the 
result of any isothermal experiment may be 
extended to nonisothermal conditions by replacing 
the stress by u and time by w, provided the initial 
temperature is the same as that of the isothermal 
experiment. In the case of tensile experiments, 
the strain e must also be replaced by E where 

E = e - a ( T ( w )  - To) (4.1) 

The preceding discussion is not limited to varying 
just the temperature. Thus, Fujita and Kishi- 
mot0 have shown13 that variation of the plasti- 
cizer content is similar in effect to the variation of 
temperature. Thus a and b may be considered 
as functions of plasticizer content instead of tem- 
perature, or even as functions of both. Tn any 
case, the formal relations and conclusions with 
regard to superposition are the same, the only 
change being in the form of the time dependence 
of a and b. 

In the case of stress relaxation, two experiments 
following different temperature paths are simply 
related. From eq. (2.12), we see that if the equiv- 
alent stresses ul and a2 are equal a t  times tl 
and tz, respectively, in the two experiments fol- 
lowing temperature paths Tl(t) and Tz(t), then 
w1 = w20r 

J: dt’/a[Ti (t’)To] = J:dt‘/~[Tz(t) ,  To] (4.2) 

By differentiation it follows that: 

(4.3) 

Hence, by plotting tz against tl a t  the same equiv- 
alent stress levels, the shift factor a is readily 
found. The factor b is simply p(T)T/p(To)To 
so that the interpretation is simple. However, in 
the case of creep, the analogous treatmentlo 
is not possible unless b is assumed to be unity. 
For stress relaxation in tension, the relations (4.2) 
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and (4.3) do not apply unless thermal expansion 
effects are negligible. 

The author wishes to acknowledge the helpful criticism of 
D. R. White of this laboratory, and Y. H. Pao, Polychem- 
icals Department, E. I. du Pont de Nemours and Co., Inc., 
during the preparation of this manuscript. 
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synopsis 

Linear viscoelastic bodies satisfy the Boltzmann super- 
position principle which permits the calculation of the 
effect of arbitrary stress or strain history in terms of creep 
or stress relaxation parameters, respectively. I n  such 
calculations, the temperature is not considered as an in- 
dependent variable; rather, the temperature must be 
constant, and the stress relaxation and creep parameters used 
are for the given temperature. By assuming the validity 
of the time-temperature superposition principle, it is shown 
how an arbitrary thermal history may be included. By 
employing spring-dashpot model methods, Boltzmann’s 
principle is generalized, leading to the concepts of equivalent 
stress u(t)  and equivalent time w(t), the latter concept 
having also been introduced for creep and stress relaxation by 
Hopkins. These quantities are defined by 

where t = time, p = density, T = temperature, and 
a[T(t’), T(0)]  is the time-temperature shift factor between 
temperatures T ( 0 )  and T(t’). In  terms of the equivalent 
stress and equivalent time, Boltzmann’s principle for shear 
remains the same as for the isothermal case with stress 
relaxation or creep parameters at the initial temperature, 
T(0) .  In  the case of tensile experiments, the observed 
strain must be corrected for thermal expansion. 

Rbsumb 
Les corps lineaires visco6lastiques satisfont au principe de 

superposition de Boltzmann qui permet le calcul de l’effet 
d’une force arbitraire du d’ une tension anterieur en termcs 
de parametres de contraction et  relaxation respectivement. 
Dans de tels calculs, la temperature n’est pas consideree 
comme une variable ind6pendante; plutot, la temp&at,ure 
doit &re constante e t  les parametres de tension-relaxation et  
contraction sont pour une temperature donnee. Si l’on 
considere le principe de superposition temps-temperature 
comme valide, on peut voir comment on peut d6velopper une 
theorei thermique arbitraire. E n  employant les methodes 
de modeles amortisseurs le principe de Boltzmann se trouve 
gen6ralis6, ce qui conduit aux concepts de force dquivalente 
u(t) et  de temps Bquivalent zu(t), ce dernier concept ayant 
aussi Bt6 introduit pour la contraction, la tension-r6laxation 
par Hopkins. Ces quantit6s sont definies par: 

o i ~  t est le temps, p = la densith, T = la temperature e t  
a[T(t‘), P’(O)] est le facteur temps-temperature variable entre 
les temp6ratures T ( 0 )  et  T(t’). En termes de force Bquival- 
ente e t  de temps equivalent, le principe de Boltzmann pour 
le cisaillement reste le meme que dans le cas isothermique 
avec des parametres tension-relaxation et  contraction A la 
temperature initiale T(0). Dans le cas d’experiences sous 
tension la force observ6e doit &re corrigee pour l’expansion 
thermique. 

Zusammenfassung 
Linear viskoelastische Korper gehorchen dem Boltzmann- 

schen Superpositionsprinzip, das die Berechnung des Ein- 
flusses einer willkurlichen Folge von Spannungen oder Ver- 
formungen als Funktion von Kriech- oder Spannungsrelaxa- 
tionsparamet,ern gestattet. Bei solchen Berechnungen wird 
die Temperatur nicht als unabhangige Variable bet,rachtet ; 
vielmehr muss die Temperatur konstant sein und die ver- 
wendeten Spannungsrelaxations- und Kriechparameter gel- 
ten fur die gegebene Temperatur. Unter Annahme der 
Gultigkeit des Prinzips der Zeit-Temperatursuperposition 
wird gezeigt, wie eine willkurliche thermische Zustandbfolge 
aufzulosen ist. Durth Anwendung von Methoden, die auf 
dem Feder-Reibungselementmodell beruhen, wird das 
Prinzip von Boltzmann verallgemeinert und fuhrt zu dem 
Konzept einer xquivalentspannung u( t )  und einer xqui- 
valentzeit w(t), wobei die letztere auch schon von Hopkins 
fur die Kriech- und Spannungsrelaxation eingefiihrt wurde. 
Diese Grossen werden durch 

definiert, wo t = Zeit, p = Dicht,e, T = Temperatur und 
a[T(t’),T(O)] der Faktor der Zeit-Temperaturverschiebung 
zwischen den Temperaturen T(0) und T(t‘) ist. Als Funk- 
tion der xquivalentspannung und der xquivalentzeit bleibt 
das Boltzmannsche Prinzip fur den Schub das gleiche wie 
fur den isothermen Fall mit Spannungsrelaxations- oder 
Kriechparamatern bei der Ausgangstemperatur T(0) .  Bei 
Dehungsversuchen muss an der beobachteten Verformung 
eine Korrektur fur die thermische Ausdehnung angebracht 
werden. 
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